skip to main content


Search for: All records

Creators/Authors contains: "Hoai, Minh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Human efficiency in finding a target in an image has attracted the attention of machine learning researchers, but what about when no target is there? Knowing how people search in the absence of a target, and when they stop, is important for Human-computer-interaction systems attempting to predict human gaze behavior in the wild. Here we report a rigorous evaluation of target-absent search behavior using the COCO-Search18 dataset to train stateof- the-art models. We focus on two specific aims. First, we characterize the presence of a target guidance signal in target-absent search behavior by comparing it to targetpresent guidance and free viewing. We do this by comparing how well a model trained on one type of fixation behavior (target-present, target-absent, free viewing) can predict behavior in either the same or different task. To compare target-absent search to free viewing behavior we created COCO-FreeView, a dataset of free-viewing fixations for the same images used in COCO-Search18. These comparisons revealed the existence of a target guidance signal in targetabsent search, albeit one much less dominant compared to when a target actually appeared in an image, and that the target-absent guidance signal was similar to free viewing in that saliency and center bias were both weighted more than guidance from target features. Our second aim focused on the stopping criteria, a question intrinsic to target-absent search. Here we propose to train a foveated target detector whose target detection representation is sensitive to the relationship between distance from the fovea. Then combining the predicted target detection representation with other information such as fixation history and subject ID, our model outperforms the baselines in predicting when a person stops moving his attention during target-absent search. 
    more » « less
  2. Abstract We present a novel photonic chip design for high bandwidth four-degree optical switches that support high-dimensional switching mechanisms with low insertion loss and low crosstalk in a low power consumption level and a short switching time. Such four-degree photonic chips can be used to build an integrated full-grid Photonic-on-Chip Network (PCN). With four distinct input/output directions, the proposed photonic chips are superior compared to the current bidirectional photonic switches, where a conventionally sizable PCN can only be constructed as a linear chain of bidirectional chips. Our four-directional photonic chips are more flexible and scalable for the design of modern optical switches, enabling the construction of multi-dimensional photonic chip networks that are widely applied for intra-chip communication networks and photonic data centers. More noticeably, our photonic networks can be self-controlling with our proposed Multi-Sample Discovery model, a deep reinforcement learning model based on Proximal Policy Optimization. On a PCN, we can optimize many criteria such as transmission loss, power consumption, and routing time, while preserving performance and scaling up the network with dynamic changes. Experiments on simulated data demonstrate the effectiveness and scalability of the proposed architectural design and optimization algorithm. Perceivable insights make the constructed architecture become the self-controlling photonic-on-chip networks. 
    more » « less